USER INTERFACE DEVELOPMENT

Bharat Aggrawal Mechanical Technology, Inc. Latham, New York

07/74 23076 322/43 P. 8

Current Status

User interface complete for the OS/2 version of the following components:

- Executive Shell
- Spiral Groove Gas Cylindrical Seals (SPIRALGC)
- Spiral Groove Gas Face Seals (SPIRALGF)
- Spiral Groove Face Seal Optimization (FACE)
- Gas Cylindrical Seals (GCYL)
- Gas Face Seals (GFACE)
- Incompressible Cylindrical Seals (ICYL)
- Incompressible Face Seals (IFACE)
- Fluid Properties Calculation (FLUID)
- Plotting Program for GCYL, GFACE, ICYL, and IFACE.
- Cylindrical Seals Configurations for SCISEAL

New Features

Features added since the last workshop based on user feedback:

- Units conversion between SI and English units from the Analysis Options menu item
- A Set Defaults menu option to set all input values to program defaults
- A Batch Mode option in the Analysis menu to run multiple test cases
- Automatic handling of data files from a previous test case
- Deletion of Input and Output files from the File menu in the Executive
- All analysis codes built using a 32-bit FORTRAN compiler for OS/2. Codes run at least twice as fast as the previous versions. Users must have OS/2 2.0 or later versions.
- New, easy to use installation program
- Several internal enhancements to improve performance and reduce development time

Bushing and Ring Seal Codes

77.3

Using an Industrial Code: FILE menu

— Gas Lubricated Cylindrical Seal Analysis;
Read Input Data
Save Input Data Save Input Data
k .
CFD Industrial Codes

Using an Industrial Code: INPUT menu

Using an Industrial Code: Array Input

Using an Industrial Code: Analysis menu

- Gas L	ubrica	ited Cylin	intea l ega	l Analysiš	And the second	
File <u>I</u> n	put 🛭	distrib	<u>View H</u>	<u>elp</u>		
Data Set		<u>Y</u> alidate <u>Run</u> Anal <u>B</u> atch Mo	Input Dati Iysis	for GCYL program		
		k				
CFD Inc	dustria	al Codes				

Using an Industrial Code: Batch Mode

GED E	— [Ich Mode]	ing and the second		Figure 10 Figure 1
Case [Input Ellename	Output File		
Case 2				
Cese Ja Cese J				
Case 1	A Parket Anna Carlos	H.	CANCEL	
	Input File List. IHSSLINP RSEXT.INP SAMPLET.INP SAMPLEZD.INP	Output F IH55LDGS IH55LDYC IH55LHP IH55LHPF	lo ret	

Using an Industrial Code: VIEW menu

Cas Lubricated Cylin File Input Analysis	V ew <u>H</u> elp	
Data Set Title: Default	Program Input Program Output Plots	YL program
	k	
CFD Industrial Codes		

CFU Browse Utility		
1	Drowalng File: CACEDAOUTEUTACCYLAHESILOUT	
P GCYL → MTI S	ample 4: T-Shaped Sectored Sea	
ECHO OF INPUT		ı
OPTION = 2 : UNIT 1. II	GIVEN LOAD, LOAD ANGLE FIND EX, EY	
	ENGLISH UNI STIFFNESS CALCULATION	
DEGREES OF FREEDO	M ≥ 14. 14. 14. 14. 14. 14. 14. 14. 14. 14.	
EXCITATION SPEED.	HPM = .0010 NUMBER OF PADS	
START 30.0	IO STARTING ANGLE OF PAD # 1	
PAU ANGLE = 120.	.00 PAD ANGLE OF PAD (1) 98 BEARING DIAMETER	
LENGIH = 2.000		
CLEARANCE = .0011	100 - BEARING CLEARANCE IIII. IIII III IIII IIII IIII	
ABS TEMP # 528.	E-08 ABSOLUTE VISCOSITY .00 ABSOLUTE TEMPERATURE	
SPECIFIC ≠ 1.660	O SPECIFIC HEAT RATIO	
GAS COMST = 179nnn	OF THE PROPERTY OF THE PROPERT	
	PRINT Programme	

Work in Progress - Future Plans

New components to be added to the system:

- Labyrinth Seal Analysis (KTK) from the Air Force. Work about 70% complete.
- Seal Dynamics Code (Face and Cylindrical Seals)
- Expert systems
- Enhancement of SPIRALI to include loss coefficients for spiral grooves

Operating System Considerations:

- Problems with conversion of user interface code to Unix
- Distributed Computing Environment (DCE) makes it possible to run programs on an OS/2 machine from a Unix workstation
- OS/2 to be available for Power PC RISC machines in April-May 1994.
- Ability to run both Unix and OS/2 on the same machine at the same time on systems based on OSF Mach 3 kernel